
1

 The fault intolerance (or fault-avoidance) approach
improves system reliability by removing the source
of failures (i.e., hardware and software faults) before
normal operation begins

 The approach of fault-tolerance expect faults to be
present during system operation, but employs
design techniques which insure the continued
correct execution of the computing process

2

Approaches:

(a) Mask failures

(b) Well defined failure behavior

(a) Mask failures:

◦ System continues to provide its specified function(s) in the
presence of failures

◦ Example: voting protocols

(b) Well defined failure behaviour:

◦ System exhibits a well define behaviour in the presence of failures

◦ It may or it may not perform its specified function(s), but
facilitates actions suitable for fault recovery

◦ Example: commit protocols

 A transaction made to a database is made visible only if successful and
it commits

 If it fails, transaction is undone

Redundancy:

◦ Method for achieving fault tolerance (multiple copies of hardware,
processes, data, etc...)

3

 Process Deaths:
◦ All resources allocated to a process must be recovered when a

process dies
◦ Kernel and remaining processes can notify other cooperating

processes
◦ Client-server systems: client (server) process needs to be

informed that the corresponding server (client) process died

 Machine failure:
◦ All processes running on that machine will die
◦ Client-server systems: difficult to distinguish between a

process and machine failure
◦ Issue: detection by processes of other machines

 Network Failure:
◦ Network may be partitioned into subnets
◦ Machines from different subnets cannot communicate
◦ Difficult for a process to distinguish between a machine and a

communication link failure

4

 System activity: sequence of primitive or atomic
actions

 Atomic Action:
◦ Machine Level: uninterruptible instruction
◦ Process Level: Group of instructions that accomplish a task
◦ Example: Two processes, P1 and P2, share a memory location

‘x’ and both modify ‘x’
Process P1 Process P2

… …

Lock(x); Lock(x);

x := x + z; x := x + y; Atomic action
Unlock(x); Unlock(x);

… …

 successful exit

◦ System level: group of cooperating process performing a task
(global atomicity)

5

 Transaction: Sequence of actions treated as an atomic action to
preserve consistency (e.g. access to a database)

 Commit a transaction: Unconditional guarantee that the
transaction will complete successfully (even in the presence of
failures)

 Abort a transaction: Unconditional guarantee to back out of a
transaction, i.e., that all the effects of the transaction have been
removed (transaction was backed out)

◦ Events that may cause aborting a transaction: deadlocks, timeouts,
protection violation

◦ Mechanisms that facilitate backing out of an aborting transaction

 Write-ahead-log protocol

 Shadow pages

 Commit protocols:

◦ Enforce global atomicity (involving several cooperating distributed
processes)

◦ Ensure that all the sites either commit or abort transaction
unanimously, even in the presence of multiple and repetitive failures

6

 Assumption:
◦ One process is coordinator, the others are “cohorts” (different sites)

◦ Stable store available at each site

◦ Write-ahead log protocol

7

Coordinator

Initialization

 Send start transaction message to all cohorts

Phase 1

 Send commit-request message, requesting all

 cohort to commit

 Wait for reply from cohorts

Phase 2

 If all cohorts sent agreed and coordinator agrees

 then write commit record into log

 and send commit message to cohorts

 else send abort message to cohorts

 Wait for acknowledgment from cohorts

 If acknowledgment from a cohort not received

 within specified period

 resent commit/abort to that cohort

 If all acknowledgments received,

 write complete record to log

Cohorts

If transaction at cohort is successful

then write undo and redo log on stable

 storage and return agreed message

else return abort message

If commit received,

 release all resources and locks held for

 transaction and

 send acknowledgment

if abort received,

 undo the transaction using undo log record,

 release resources and locks and

 send acknowledgment

 Principles:
◦ Data replicated at several sites to increase reliability
◦ Each replica assigned a number of votes
◦ To access a replica, a process must collect a majority of votes

 Vote mechanism:
(1) Static voting:

 Each replica has number of votes (in stable storage)

 A process can access a replica for a read or write operation if
it can collect a certain number of votes (read or write
quorum)

(2) Dynamic voting

 Number of votes or the set of sites that form a quorum
change with the state of system (due to site and
communication failures)

(2.1) Majority based approach:
 Set of sites that can form a majority to allow access to replicated

data of changes with the changing state of the system

(2.2) Dynamic vote reassignment:
 Number of votes assigned to a site changes dynamically

8

 Resilient process: continues execution in the presence
of failures with minimum disruption to the service
provided (masks failures)

 Approaches for implementing resilient processes:
◦ Backup processes and

◦ Replicated execution

(1) Backup processes
◦ Each process made of a primary process and one or more

backup processes

◦ Primary process execute, while the backup processes are
inactive

◦ If primary process fails, a backup process takes over

◦ Primary process establishes checkpoints, such that backup
process can restart

(2) Replicated execution
◦ Several processes execute same program concurrently

◦ Majority consensus (voting) of their results

◦ Increases both the reliability and availability of the process
9

 Provide fault-tolerance within an individual sequential
process in which assignments to stored variables are
the only means of making recognizable progress

 The recovery block is made of:

◦ A primary block (the conventional program),

◦ Zero or more alternates (providing the same function as the
primary block, but using different algorithm), and

◦ An acceptance test (performed on exit from a primary or
alternate block to validate its actions).

10

11

Recovery Block A

Acceptance test AT

Primary block AP

<Program text>

Alternate block AQ

<Program text>

Primary block

alternate block

Acceptance

test

Recovery block

12

Module ‘0’

Module ‘1’

Module ‘n-1’

Voter

